Popular posts

Bentuk Bilangan Akar dan Bilangan Berpangkat

Kamis, 17 Maret 2016
Posted by rafidwi
Bilangan Berpangkat Pecahan

Untuk menentukan bilangan berpangkat pecahan, Anda harus paham dengan konsep bilangan berpangkat bulat positif, bahwa bilangan berpangkat an didefinisikan sebagai perkalian berulang a sebanyak n faktor. Misalnya 42 = 4 × 4. Bagaimana kalau 41/2? Untuk memahami bilangan berpangkat pecahan, silahkan simak uraian berikut ini.
Misalkan kita ambil contoh 4a = 2. Pernyataan tersebut menyatakan bahwa 4 dipangkatkan a hasilnya sama dengan 2. Berapakah nilai a?
=> 4a = 2
=> (22)a = 21
=> 22a = 21
Ini berati 2a = 1 maka a = ½, sehingga 41/2 = 2. Oleh karena √4 = 2, maka √4 = 41/2 = 2. Bagaimana dengan 125x = 5, berapakah nilai x?
Ini berati 3x = 1 maka x = 1/3, sehingga (125)1/3 = 5. Oleh karena:
Berdasarkan uraian di atas maka definisi bilangan berpangkat pecahan, yaitu sebagai berikut.
dengan a ≥ 0 dan m, n bilangan bulat positif.
Untuk memantapkan pemahaman Anda tentang konsep bilangan berpangkat pecahan, silahkan simak contoh soal di bawah ini.
Contoh Soal 1
Ubahlah bentuk pangkat pecahan berikut ke bentuk akar.
a. 61/2
b. 53/2
c. 117/2
Penyelesaian:
a. 61/2 = √6
b. 53/2 = √53
c. 117/2 = √117
Contoh Soal 2
Ubahkan bentuk akar berikut ke bentuk pangkat pecahan.
a. √6
b. √(25)4
c. √(27)3
Penyelesaian:
a. √6 = 61/2
b. √(25)4 = (254)1/2 = 252 = (52)2 = 54
c. √(27)3 = (273)1/2 = 273/2 = (33)3/2 = 39/2
Contoh Soal 3
Sederhanakan bentuk-bentuk pecahan berikut.
a. 61/2 × 61/2
b. 54 × 53/2
c. (81/2)3/4
d. 65/2/63/2
e. (7-5/2 × 7-1/2)/7-3
Penyelesaian:
a. 61/2 × 61/2 = 6(1/2)+(1/2) = 61 = 6
b. 54 × 53/2 = 5(8/2)+(3/2) = 511/2 
c. (81/2)3/4 = 8(1/2 × 3/4) = 83/8
d. 65/2/63/2 = 6(5/2 - 3/2) = 61 = 6
e. (7-5/2 × 7-1/2)/7-3 = 7-5/2 -1/2-(-3) = 7-6/2 + 37= 1
Demikian postingan tentang bilangan berpangkat pecahan dan contoh soalnya. Mohon maaf jika ada kata atau perhitungan yang salah dalam postingan di atas.

Pengertian Kekongruenan Pada Bangun Datar

Posted by rafidwi
Untuk memahami pengertian kekongruenan pada bangun datar, silahkan simak ilustrasi berikut ini. Pernahkah kamu melihat seorang tukang bangunan yang sedang memasang ubin? Sebelum ubin-ubin itu dipasang, biasanya tukang tersebut memasang benang-benang sebagai tanda agar pemasangan ubin tersebut terlihat rapi, seperti tampak pada gambar di bawah ini. Cara pemasangan ubin tersebut dapat diterangkan secara geometri seperti berikut.
Gambar di atas adalah gambar permukaan lantai yang akan dipasang ubin persegipanjang. Pada permukaannya diberi garis-garis sejajar. Jika ubin ABCD digeser searah AB (tanpa dibalik), diperoleh A => B, B => E, D => C, dan C => F sehingga ubin ABCD akan menempati ubin BEFC. Akibatnya,
AB => BE sehingga AB = BE
BC => EF sehingga BC = EF
DC => CF sehingga DC = CF
AD => BC sehingga AD = BC
DAB =>  CBE sehingga DAB = CBE
ABC =>  BEF sehingga ABC = BEF
BCD =>  EFC sehingga BCD = EFC
ADC =>  BCF sehingga ADC = BCF
Berdasarkan pemaparan di atas maka diperoleh bahwa:
  1. sisi-sisi yang bersesuaian dari persegipanjang ABCD dan persegipanjang BEFC sama panjang, dan
  2. sudut-sudut yang bersesuaian dari persegi panjang ABCD dan persegipanjang BEFC sama besar.

Hal tersebut menunjukkan bahwa persegipanjang ABCD dan persegipanjang BEFC memiliki bentuk dan ukuran yang sama. Dua persegi panjang yang demikian dikatakan kongruen.

Berdasarkan uraian tersebut diperoleh gambaran bahwa dua bangun yang kongruen pasti sebangun, tetapi dua bangun yang sebangun belum tentu kongruen. Bangun-bangun yang memiliki bentuk dan ukuran yang sama dikatakan bangun-bangun yang kongruen. Pengertian kekongruenan tersebut berlaku juga untuk setiap bangun datar.


Untuk memantapkan pemahaman Anda tentang pengertian kekongruenan, silahkan simak beberapa contoh soal di bawah ini.
Contoh Soal 1
Perhatikan gambar di bawah ini! Apakah persegipanjang ABCD kongruen dengan persegi panjang PQRS dan apakah persegipanjang ABCD sebangun dengan persegi panjang PQRS? buktikan!
Penyelesaian:
Unsur-unsur persegipanjang ABCD adalah AB = DC = 8 cm, AD = BC = 6 cm, dan A = B = C = D = 90°. Amati persegipanjang PQRS dengan diagonal PR. Panjang PQ dapat ditentukan dengan menggunakan Theorema Pythagoras seperti berikut.
PQ = (PR)2 - (QR)2
PQ = (10)2 - (6)2
PQ = 64
PQ = 8

Jadi, unsur-unsur persegipanjang PQRS adalah PQ = SR = 8 cm, PS = QR = 6 cm, dan P = Q = R = S = 90°.  Dari uraian tersebut tampak bahwa sisi-sisi yang bersesuaian dari persegipanjang ABCD dan persegipanjang PQRS sama panjang. Selain itu, sudut-sudut yang bersesuaian dari kedua persegipanjang itu sama besar. Jadi, persegipanjang ABCD kongruen dengan persegipanjang PQRS. Dua bangun datar yang kongruen pasti sebangun. Jadi, persegi panjang ABCD sebangun dengan persegipanjang PQRS.

Contoh Soal 2 
Perhatikan dua bangun datar yang kongruen berikut.
Tentukan besar sudut E! 

Penyelesaian:
Karena kedua bangun di atas kongruen maka sudut-sudut yang bersesuaian sudah pasti sama besar.
∠A = ∠F = 45°
∠C = ∠H = 60°
∠D = ∠G = 120°
∠B = ∠E = ?
Ingat** karena kedua bangun kongruen maka jumlah sudut pada bangun datar ABCD sama dengan jumlah sudut pada bangun datar EFGH = 360°, maka:
<=> ∠E = 360° - (∠F + ∠H + ∠G)
<=> ∠E = 360° - (45° + 60° + 120°)
<=> ∠E = 360° - 225°
<=> ∠E = 35°
Jadi besar sudut E adalah 35°

Demikian postingan tentang pengertian kekongruenan suatu bangun datar. Mohon maaf jika ada kata atau perhitungan yang salah dalam postingan di atas. Salam Matematika

Pengetian Kesebangunan Pada Bangun Datar

Posted by rafidwi
foto berskala merupakan salah satu contoh penerapan konsep kesebangunan dalam kehidupan sehari-hari. Apa pengertian kesebangunan?

Untuk lebih mudah memahami apa pengetian dari kesebangunan silahkan perhatikan gambar persegi panjang ABCD dan PQRS di bawah ini! 

 pengertian kesebangunan
Pada persegi panjang ABCD memiliki panjang dan lebar yaitu 36 mm dan 24 mm, serta persegi panjang PQRS memiliki panjang dan lebar yaitu 58 mm dan 38 mm.
Perbandingan antara panjang persegipanjang ABCD dan panjang persegi panjang PQRS adalah 36 : 144 atau 1 : 4. Demikian pula dengan lebarnya, perbandingannya 24 : 96 atau 1 : 4. Dengan demikian, sisi-sisi yang bersesuaian dari kedua persegipanjang itu memiliki perbandingan senilai (sebanding). Perbandingan sisi yang bersesuaian dari kedua persegipanjang tersebut, yaitu sebagai berikut.
AB/PQ = BC/QR = CD/RS = AD/PS = ¼
Oleh karena semua sudut persegipanjang besarnya 90° (siku-siku) maka sudut-sudut yang bersesuaian dari kedua persegipanjang itu besarnya sama. Dalam hal ini, persegipanjang ABCD dan persegipanjang PQRS memiliki sisi-sisi bersesuaian yang sebanding dan sudut-sudut bersesuaian yang sama besar. Selanjutnya, kedua persegipanjang tersebut dikatakan sebangun. Jadi, persegipanjang ABCD sebangun dengan persegipanjang PQRS.
Pengertian kesebangunan seperti ini berlaku umum untuk setiap bangun datar. Dua bangun datar dikatakan sebangun jika memenuhi dua syarat berikut:
  1. Panjang sisi-sisi yang bersesuaian dari kedua bangun itu memiliki perbandingan senilai.
  2. Sudut-sudut yang bersesuaian dari kedua bangun itu sama besar.

Untuk memantapkan pemahaman Anda tentang pengertian kesebangunan, silahkan perhatikan contoh soal di bawah ini.

Contoh Soal 1
Jika persegipanjang ABCD sebangun dengan persegi panjang PQRS, hitung panjang QR.
soal kesebangunan
Penyelesaian:
Salah satu syarat dua bangun dikatakan sebangun adalah sisi-sisi yang bersesuaian sebanding. Oleh karena itu,
AB/PQ = BC/QR
2/6 = 5/QR
2QR = 30
QR = 15
Jadi, panjang QR adalah 15 cm.
Contoh Soal 2
Jika layang-layang KLMN dan layang-layang PQRS pada gambar di bawah ini sebangun, tentukan besar R dan S.
soal kesebangunan
Penyelesaian:
Salah satu syarat dua bangun dikatakan sebangun adalah sudut-sudut yang bersesuaian sama besar sehingga P = 125° dan Q = 80°. Amati layang-layang PQRS, menurut sifat layang-layang, sepasang sudut yang berhadapan sama besar sehingga R = P = 125°. Oleh karena sudut dalam layang-layang berjumlah 360° maka
<=>P + Q + R + S = 360°
<=>S = 360° – (P + Q + R)
<=>S = 360° – (125° + 80° + 125°)
<=>S = 360° – 330° 
<=> S = 30°


Demikian postingan  tentang pengertian kesebangunan dan contoh soalnya. Selain kita mengenal istilah "kesebangunan", kita juga akan mengenal istilah "kekongruenan". Apa pengertian kekongruenan? Mohon maaf jika ada kata atau perhitungan yang salah dalam postingan di atas. Salam Matematika

Materi Bangun Ruang Sisi Lengkung SMPKelas 9

Kamis, 10 Maret 2016
Posted by rafidwi

Materi Bangun Ruang Sisi Lengkung SMP Kelas 9

Bangun Ruang Sisi Lengkung - Di dalam postingan ini rumus matematika dasar akan memberikan pembahasan mengenai materi pelajaran matematika untuk kelas 9 SMP yaitu mengenai bangun ruang sisi lengkung. Tahukah kalian apa yang dimaksud dengan bangun ruang sisi lengkung? Jika belum tahu maka di sini kalian bisa mempelajari pengertian, rumus-rumus yang digunakan, serta contoh soal mengenai bangun ruang lengkung. Ini dia pembahasannya:

Materi Bangun Ruang Sisi Lengkung SMP Kelas 9

Materi Matematika SMP Kelas 9 Bangun Ruang Sisi Lengkung 


Pengertian Bangun Ruang Sisi Lengkung
Bangun ruang sisi lengkung adalah kelompok bangun ruang yang memiliki bagian-bagian yang berbentuk lengkungan. Biasanya bangun ruang tersebut memiliki selimut ataupun permukaan bidang. Yang termasuk ke dalam bangun ruang sisi lengkung adalah tabung, kerucut, dan bola.


Tabung
Tabung merupakan sebuah bangun ruang yang dibatas oleh dua bidang berbentuk lingkaran pada bagian atas dan bawahnya. Kedua lingkaran tersebut memiliki ukuran yang sama besar serta kongruen. Keduanya saling berhadapan sejajar dan dihubungkan oleh garis lurus. unsur-unsur yang ada pada tabung diantaranya adalah:

t = tinggi tabung
r = jari-jari


Rumus-Rumus Yang Berlaku untuk Tabung:

Luas Alas = Luas Lingkaran = πr2
Luas Tutup = Luas Alas = πr2
Luas Selimut = Keliling Alas × Tinggi = 2πr × t = 2πrt

Luas Permukaan Tabung = Luas Alas + Luas Tutup + Luas Selimut
Luas Permukaan Tabung = πr2 + πr2 + 2πrt
Luas Permukaan Tabung = 2πr2 + 2πrt
Luas Permukaan Tabung = 2πr(r + t )

Volume Tabung = Luas Alas × Tinggi
Volume Tabung = πr2 x t
Volume Tabung = πr2 t



Kerucut
kerucut merupakan sebuah bangun ruang yang alasnya berbentuk lingkaran dan dibatasi oleh garis-garis pelukis yang mengelilinginya membentuk sebuah titik puncak. unsur-unsur yang ada pada kerucut adalah:

t = tingi kerucut
r = jari-jari alas kerucut
s = garis pelukis


Rumus-Rumus Yang Berlaku untuk Kerucut:

Luas alas = luas lingkaran = πr2
Luas selimut = Luas Juring
Luas selimut =     panjang busur    x luas lingkaran
                            keliling lingkaran
Luas Selimut = 2πr x πs2
                           2πs
Luas Selimut = πrs

Luas Permukaan Kerucut = Luas alas + Luas Selimut
Luas Permukaan Kerucut = πr2 + πrs
Luas Permukaan Kerucut = πr (r + s)

Volume Kerucut = 1/3 x volume tabung
Volume Kerucut = 1/3 x luas alas x tinggi
Volume Kerucut = 1/3 x πr2 x t
Volume Kerucut = 1/3πr2t



Bola
bola merupakan sebuah bangun ruang yang memiliki titik pusat dan membentuk titik-titik dengan jari-jari yang sama yang saling berbatasan. unsur-unsur yang ada pada bola adalah:

r = jari-jari bola


Rumus-Rumus Yang Berlaku untuk Bola:

Luas Permukaan Bola = 2/3 x Luas Permukaan Tabung
Luas Permukaan Bola = 2/3 x 2πr (r + t)
Luas Permukaan Bola = 2/3 x 2πr (r + 2r)
Luas Permukaan Bola = 2/3 x 2πr (3r)
Luas Permukaan Bola = 4πr2

Volume Bola = 4/3πr3

Luas Belahan Bola Padat = Luas 1/2 Bola + Luas Penampang
Luas Belahan Bola Padat = 1/2 x 4πr2 + πr2
Luas Belahan Bola Padat = 2πr2 + πr2
Luas Belahan Bola Padat = 3πr2


Contoh Soal Bangun Ruang Sisi Lengkung


Contoh Soal  1
Diketahui sebuah tabung memiliki ukuran jari-jari 10 cm dan tinggi 30 cm. Maka coba hitunglah:
- volume tabung
- luas alas tabung
- luas selimut tabung
- luas permukaan tabung

Penyelesaiannya:
Volume tabung
V = π r2 t
V = 3,14 x 10 x 10 x 30 = 9432 cm3

Luas alas tabung
L = π r2
L = 3,14 x 10 x 10 = 314 cm2

Luas selimut tabung
L = 2 π r t
L = 2 x 3,14 x 10 x 30
L = 1884 cm2

Luas permukaan tabung
Luas permukaan tabung = luas selimut + luas alas + luas tutup (luas tutup = luas alas)
L =  1884 + 314 + 314= 2512 cm2



Contoh Soal 2
Dketahui sebuah topi petani berbentuk kerucut  memiliki jari-jari sebesar 500cm dan garis pelukis s = 300 cm, maka tentukanlah:

- tinggi kerucut
- volume kerucut
- luas selimut kerucut
- luas permukaan kerucut

Penyelesaianya:
tinggi kerucut
Tinggi kerucut dapat diketahui dengan menggunakan rumus phytagoras:
t2 = s2 − r2
t2 = 3002 − 5002
t2 = 1600000
t = √1200 = 400 cm

volume kerucut
V = 1/3 π r2 t
V = 1/3 x 3,14 x × 500 x 500 x 400
V = 104666667cm3

luas selimut kerucut
L = π r s
L = 3,14 x 500 x 300
L = 4 71000 cm2

luas permukaan kerucut
L = π r (s + r)
L = 3,14 x 300 (500 + 300)
L = 3,14 x 300 x 800 = 7 53600 cm2



Contoh Soal  3
Bila sebuah bola basket memiliki jari-jari sebesar 40cm, maka coba kalian tentukan luas permukaan serta volume dari bola basket tersebut!

Penyelesaiannya:

luas permukaan bola
L = 4π r2
L = 4 x 3,14 x 40 x 40
L = 20096 cm2

volume bola
V = 4/3 π r3
V = 4/3 x 3,14 x 40 x 40 x 40
V = 267946,67 cm3


Itulah pembahasan lengkap Materi Bangun Ruang Sisi Lengkung SMP Kelas 9 . Semoga bisa membantu kalian untuk menguasai materi bangun ruang sisi lengkung dengan lebih baik. Simak postingan sebelumnya mengenai materi sifat-sifat bangun ruang lengkap
kutipan dari http://www.rumusmatematikadasar.com/2015/01/materi-bangun-ruang-sisi-lengkung-smp-kelas-9.html